Experimental verification of a mathematical model for pelleted growth of Streptomyces coelicolor A3(2) in submerged batch culture.
نویسندگان
چکیده
A published mathematical model for growth of pellets of filamentous microorganisms has been tested by comparison of model predictions with experimental data on growth of Streptomyces coelicolor in liquid batch culture. The original model considered the classification of pellets into a range of size classes. Growth resulted in movement of pellets to classes of increasing size, while shear forces produced mycelial fragments which entered the smallest size class, from which they grew to form further pellets. This model did not correctly describe changes in pellet size distributions during growth and was therefore modified in two ways. In the first, new pellets were assumed to be formed by the break-up, by shear forces, of existing pellets into two pellets of equal size, rather than removal of small hyphal fragments from the pellet surface. The second modification assumed that the outer shell of active mycelial biomass had a density less than 1 g cm-3 and that hyphal density within this shell decreased with distance from the pellet centre. The modified model generated predictions which agreed closely with experimental data on biomass concentration, pellet size distribution, pellet number and pellet radius during batch growth, thereby supporting the assumptions on which the model was based. The model did not accurately describe final biomass concentration, through lack of consideration of autolysis of mycelia at the centre of larger pellets in which growth was limited by diffusion of nutrients. Attempts to incorporate autolysis into the model improved prediction of biomass concentration but were not based on sound biological assumptions and increased the complexity of the model. Further experimental work is required for accurate description of the effects of autolysis on pellet growth.
منابع مشابه
Evaluation of Cell Growth and Substrate Consumption Kinetic of Five Different Lactobacilli in a Submerged Batch Whey Culture for Lactic Acid Production
Cell growth and lactose consumption profile of five Lactobacillus Strains: bulgaricus, casei, lactis, delbrueckii and fermentum has been investigated. Experiments of cell growth and substrate utilization were conducted in batch submerged culture of whey with added lactose and some other growth factors. Fitness assessment of experimental data on the cell growth and lactose consumption by Monod k...
متن کاملThe stringent response in Streptomyces coelicolor A3(2).
The stringent response was elicited in the antibiotic producer Streptomyces coelicolor A3(2) either by amino acid depletion (nutritional shiftdown) or by the addition of serine hydroxamate; both led to increased levels of ppGpp and to a reduction in transcription from the four promoters of the rrnD rRNA gene set. Analysis of untreated batch cultures revealed elevated ppGpp levels at the end of ...
متن کاملMycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor.
Despite the fact that most industrial processes for secondary metabolite production are performed with submerged cultures, a reliable developmental model for Streptomyces under these culture conditions is lacking. With the exception of a few species which sporulate under these conditions, it is assumed that no morphological differentiation processes take place. In this work, we describe new dev...
متن کاملGenome-scale analysis of Streptomyces coelicolor A3(2) metabolism.
Streptomyces are filamentous soil bacteria that produce more than half of the known microbial antibiotics. We present the first genome-scale metabolic model of a representative of this group--Streptomyces coelicolor A3(2). The metabolism reconstruction was based on annotated genes, physiological and biochemical information. The stoichiometric model includes 819 biochemical conversions and 152 t...
متن کاملModeling the architecture of the regulatory system controlling methylenomycin production in Streptomyces coelicolor
BACKGROUND The antibiotic methylenomycin A is produced naturally by Streptomyces coelicolor A3(2), a model organism for streptomycetes. This compound is of particular interest to synthetic biologists because all of the associated biosynthetic, regulatory and resistance genes are located on a single cluster on the SCP1 plasmid, making the entire module easily transferable between different bacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 142 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1996